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Abstract

In this work we introduce a novel solution to the semantic image labelling problem,
i.e. the task of assigning semantic object class labels to individual pixels in a test im-
age. Conventional methods are typically relying on random fields for modelling interac-
tions between neighboring pixels and obtaining smooth labelling results using unary and
pairwise cost functions. Instead, we consider the labelling problem as a puzzle game,
where the final labelling is obtained by assembling discriminatively learned candidate
sets of label puzzle pieces, each representing a topological and semantically plausible
label configuration. The puzzle game is set up by means of a modified random forest
classifier, designed to learn the local, topological label-structure and hence the local con-
text associated to the training data. To solve the puzzle game we propose an iterative
optimization technique that maximizes an agreement function by alternatingly seeking
for the best label puzzle piece per pixel and the resulting semantic labelling per image.
We provide both, theoretical properties of our puzzle solver algorithm as well as experi-
mental results on the challenging MSRC and CamVid databases. In a direct comparison
with a conditional random field we obtain superior results, indicating the practicability
of our proposed method.

1 Introduction
The field of semantic image labelling has received great attention and evolved in a remark-
able manner during the past couple of years. Given an input image, it aims for the proper
assignment of a-priori learned class labels to each pixel in a test image1. For instance, a
typical street scene might result in coherently labelled regions of road, car, bicyclist and so
on. In order to obtain labellings reflecting the natural statistics of a scene, state-of-the-art
approaches [13, 18, 19] combine multiple, complementary cues at different levels within

c© 2011. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1For brevity reasons we use the terms image labelling or solely labelling interchangeably instead of semantic
image labelling throughout the paper.
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random field models [20]. These include low-level cues which are mostly computed on a
per-pixel basis and incorporate local color or texture statistics. Mid-level cues operate on re-
gions or superpixels to provide shape, continuity or symmetry information. Motivated from
perceptual psychology [2, 3], high-level cues introduce global image statistics and informa-
tion about inter-object or contextual relations, seeking for proper scene configurations at the
image level.

Many researchers are following the idea of Shotton et al. [31], putting special emphasis
on the generation of good unary potentials to be used in conjunction with a conditional ran-
dom field (CRF) model. Indeed, unary potentials have a significant influence on the success
of a labelling algorithm. For instance, [31] uses an adapted version of joint boosting [35]
to train unary classifiers integrating textons [23] and shape filters. Similarly, [33] uses a
boosting approach to combine an extended set of different feature cues. Recently, several
methods [7, 15, 29, 32, 36] used random forests [1, 6, 12] for obtaining properly learned
combinations of local features like color, intensity derivatives, covariance features [26], tex-
tons, HOG features [10] or motion and 3D structure features [7].

To render the inference process more efficient and include segmentation information,
many works [21, 28] consider mid-level or super-pixel representations rather than individual
pixels. In such a way, the labelling problem is defined over regions, mostly obtained by
Mean Shift [9], graph-based approaches [11] or Normalized Cut [30]. To cope with subop-
timal segmentations not following the desired object boundaries, [17, 25] combine multiple
segmentations or reshape superpixels to recover from errors as presented in [14]. Recently,
some researchers [18, 19, 27, 34] also started to incorporate high-level information, e.g.
contextual (semantic) or object detector information, into CRFs. This yields a considerable
improvement of the overall labelling results, since contradicting labellings can be resolved
by means of global or co-occurrence statistics. In other words, such information helps to
improve the labelling of adjacent regions being partially labelled by non-compatible object
class configurations.

The label space characterizing an image labelling problem instance does indeed exhibit
an inherently topological structure which renders the class labels explicitly interdependent.
Many approaches to labelling, however, are not exploiting this information properly, as they
rely on classifiers trained on a set of labeled images, which associate pixels only with single,
atomic class labels acting as arbitrary identifiers without any dependencies among them (e.g.
[7, 15]). In this way, the structured label space information in the training images remains
largely unexploited. As a consequence, labellings obtained at a low-level are quite noisy and
exhibit configurations of labels which never appeared in the training images. To alleviate
this effect, the atomic labels obtained by the base classifiers are combined in a more or less
sophisticated way, e.g. by means of a CRF. However, the rules guiding this label relaxation
process are typically imposed in a top-down fashion rather than being learnt from training
data. At a high-level, some efforts have been put on capturing topological relationships
between labels, e.g. by collecting co-occurrence statistics of categories in images. However,
the integration of this information in the labelling approaches leads typically to simplistic,
but expensive, high-order energy terms in CRFs, or to a-posteriori re-elaboration of low- or
mid-level labelling solutions.

Contributions. In this paper we propose a novel method to include local, contextual in-
formation into the low-level classification process. Instead of integrating a series of comple-
mentary cues within a random field model, we formulate the image labelling problem as the
task of assembling topological label information in a coherent way. Intuitively, our approach
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can be explained as a puzzle game where the puzzle pieces are represented by structured ob-
ject class labels. These structured labels are directly obtained and learned from the ground
truth training data and always exhibit a semantically meaningful label configuration. In such
a way, the set of possible label puzzle pieces only shows plausible label configurations such
as a cow standing on grass but not on water. In concrete terms, the labelling of an image is
obtained as a result of a two-stage process. First, the label puzzle game is set up by assign-
ing a set of plausible puzzle pieces to each pixel in the test image, using a modified random
forest classifier. Afterwards, we search for a solution of the label puzzle, which consists
of both, a per-pixel class label and puzzle piece selection, maximizing a measure of overall
agreement. This optimization problem is addressed by means of a heuristic, which alternates
between optimizing the image labelling and the per-pixel puzzle piece selection. As a result,
we obtain a joint labelling based on the selection of plausible, local label configurations,
respecting the local contextual information of neighboring pixels.

Paper organization. In Section 2 we describe our image labelling puzzle approach, and
provide related definitions and notations. In Section 3 we describe how to set up a label
puzzle game by means of a modified random forest classifier, which discriminatively learns
structured labels from the training data. In Section 4 we introduce an algorithm to solve the
label puzzle game, show its theoretical properties and analyse its complexity. Finally, we
provide experimental results and concluding remarks in Sections 5 and 6, respectively.

2 The Label Puzzle Game
In this section we propose our novel idea, which considers image labelling as the task of
assembling a kind of puzzle, where the pieces are label configurations (e.g. in our experi-
ments they are square patches of labels) gathered from the training images during a learning
and classification process. Please note that this is in contrast to a common tiling or jigsaw
puzzle [8, 37], where the pieces form a partition of the target image in the image domain. In-
stead, we associate each pixel with a possibly different set of label puzzle pieces in the label
domain from which only one must be selected. Additionally, pieces belonging to different
pixels may overlap. Given a test image, the goal is to simultaneously assemble the related
puzzle and assign labels to pixels in a way such that the agreement of the selected pieces
with the underlying labelling is maximized.

Notations and definitions. An image is a function f : D→Rd mapping pixels in D⊆Z2 to
d-dimensional feature vectors, encoding different local cues of the image (e.g. color, gradient
features, filter banks). A labelling for an image is a function ` : D→ Y mapping pixels to
labels in Y = {1, . . . ,k}. A (label) puzzle piece is a (local) label configuration, i.e. a function
p : Z2→Y ∪{⊥}mapping two-dimensional points to labels or to void (⊥), a special symbol
indicating the absence of a label. The set of images, labellings and puzzle pieces (i.e. label
configurations) are denoted by I , L and P , respectively. A puzzle configuration is a
function z : D→P associating each pixel in D with a puzzle piece in P . The set of puzzle
configurations is denoted by Z . Note that, for notational convenience, we will write in the
sequel zi, j ∈P instead of z(i, j) and we will denote with zi, j(u,v) the label in position (u,v)
in puzzle piece zi, j.

The agreement of a puzzle piece p ∈P located in (i, j) ∈ D with a labelling ` ∈L is
defined as the number of corresponding pixels sharing the same label, i.e.

φ
(i, j) (p, `) = ∑

(u,v)∈D
[p(u− i,v− j) = `(u,v)] , (1)
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where [P] are the Iverson brackets yielding 1 if proposition P is true, 0 otherwise. Given a
puzzle configuration z ∈Z and a labelling ` ∈L , the total agreement Φ(z, `) of the image
labelling puzzle is the sum of the agreements of each puzzle piece in z with the labelling `,
i.e.

Φ(z, `) = ∑
(i, j)∈D

φ
(i, j) (zi, j, `) . (2)

The label puzzle game. A label puzzle game for an image f ∈I is a function π f mapping
each pixel (i, j)∈D to a non-empty set of puzzle pieces π f (i, j)⊆P . This function restricts
the possible choices of puzzle pieces per pixel and, hence, also the set of admissible puzzle
configurations to

Z |π f =
{

z ∈Z
∣∣zi, j ∈ π f (i, j)

}
.

A solution of a label puzzle game π f is a pair (z∗, `∗)∈Z |π f ×L consisting of an admissible
puzzle configuration and a labelling for f yielding the maximum total agreement:

(z∗, `∗) ∈ arg max
(z,`)

{
Φ(z, `)

∣∣∣(z, `) ∈Z |π f ×L
}
. (3)

A heuristic for finding a solution of (3) will be discussed in Section 4.
An important component of our framework is the label puzzle game generator providing

the label puzzle game π f for any image f ∈I we want to label. The generator is obtained
as the result of a supervised learning process, involving a set of labelled training images, and
will be discussed in the next section.

3 Label Puzzle Game Generator
In this section, we describe a puzzle game generator built upon an adapted random forest
classifier [16]. The basic idea is to collect a set of admissible label puzzle pieces for each
pixel in a test image, which will be used to create the label puzzle game. To this end, we
augment random forests with the ability of performing structured label predictions rather
than single and atomic classifications. In such a way we directly obtain structured labels as
output of our classifier, subsequently denoted as puzzle pieces.

Before moving into the details of our approach, we briefly review the traditional random
forest framework [1, 12]. A random forest is an ensemble of binary decision trees, each of
which is a classifier mapping samples in X to class labels in Y . In the context of image
labelling, the sample space X consists of a set of labelled patches (e.g. square regions of
pixels) extracted from the training images, where each patch is associated with the label of
a specific pixel it contains (typically the one in the center). The prediction for a sample
in a decision tree takes place by routing it from the root node to a leaf holding a class
label. The path followed by a sample moving along the tree is determined by split functions
ψ : X → {left, right} located in each node, according to which a sample is forwarded to
the left or right child. The prediction for the whole forest is computed using a majority
vote criterion from the predictions cast by its single decision trees. As for the learning part,
decision trees in a random forest are recursively trained by selecting in each node a split
function from a set of randomly generated ones, which induces a partition of the training
set showing the best information gain about the class label distributions due to the split.
According to the chosen split function in a node, the training set is then partially forwarded
to its left and right child, respectively. If the training samples reaching a node are less than a
given threshold, if they exhibit a low entropy in their class label distribution or if a maximum
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...
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(i, j)

f

πf (i, j)
χf (i, j)

ψ

ψ

ψ

ψ

ψ

Figure 1: Pipeline of the construction of a label puzzle game. For each pixel (i, j) of the
test image f , we extract an image patch χ f (i, j) and compute a set of plausible puzzle pieces
π f (i, j) for it by means of a modified random forest.

depth in the tree is reached, the recursion stops and a leaf is grown. Finally, the class label
best represented in the training samples is assigned to the leaf.

To adapt the random forest to collect puzzle pieces, we change the label space from Y
to the set of puzzle pieces P . Hence, each decision tree can be considered as a function
h : X →P mapping image patches in X to puzzle pieces in P . Accordingly, the training
set consists of image patches with a corresponding structured label, i.e. a puzzle piece p∈P
collected from the ground truth. The shape of a puzzle piece may be arbitrary but, for
simplicity, we assume all puzzle pieces to have the same shape. Note that in our experiments
we considered simple square regions of labels as puzzle pieces, as illustrated in Figure 1.

Besides dealing with a structured label space, our decision trees present other significant
differences with respect to standard ones. First, we changed the way the best split function is
selected at each tree node in order to take the new label space into account. Specifically, we
randomly select for each node a point (i, j) ∈ Z2 and any training sample (x, p) ∈X ×P
reaching that node is given label p(i, j). By so doing, the same training sample may be
considered with different labels in different nodes, thereby exploiting the whole structure
of the puzzle piece during the tree construction. Moreover, the split function selection can
still be efficiently carried out using, e.g. the technique based on information gain. A second
difference is in the way a puzzle piece is selected as representative in a leaf: Given a leaf
of the tree, let T ⊆X ×P be the subset of the training set that reached the leaf during the
training procedure. Since we would like to select a representative close to the mode of the
distribution of puzzle pieces in the leaf, we estimate a conditional probability Pr(p|T ) of a
puzzle piece given T . For simplicity, we make a pixel independence assumption, thereby
obtaining:

Pr(p|T ) = ∏
(i, j)∈Z2

Pr(i, j) (p(i, j)|T ) ,

as product of the marginal class label distributions Pr(i, j)(y|T ) of pixels in position (i, j)
given T , where

Pr(i, j)(y|T ) = 1
|T | ∑

(x,p)∈T
[p(i, j) = y] .

The puzzle piece representative p∗ for the leaf is then selected as the one maximizing the
joint probability over the set of available puzzle pieces:

p∗ ∈ arg max
p
{Pr(p|T ) |(x, p) ∈ T for some x ∈X } .
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Finally, a random forest {h1, . . . ,hn} consisting of n trees can be considered as a function
H mapping image patches x ∈ X to non-empty sets of puzzle pieces H(x) ⊆P in the
following way:

H(x) =
n⋃

k=1

{hk(x)} .

Note that, as opposed to standard random forests, the predictions gathered from the single
decision trees are not merged into a single puzzle piece, but we keep them all as a set of
puzzle pieces. The modified random forest can then be used to generate a label puzzle game
for an image f ∈I as follows:

π f (i, j) = H(χ f (i, j)) , (4)

where χ f (i, j) ∈X denotes the patch extracted from image f ∈I in position (i, j) ∈ D. In
Figure 1, we summarize the label puzzle game generation process for a particular image.

4 Label Puzzle Game Solver
The optimization problem in (3) underlying our image labelling approach is in general non-
trivial to solve. The algorithm we propose in this section is a heuristic, which is simple and
effective as shown in the experiments conducted (see Section 5). It is based on an alter-
nating optimization technique, where we iteratively switch between optimizing the labelling
variable ` ∈L and the puzzle configuration variable z ∈Z |π f .

Let `(t) be the labelling of the image at a given time t ≥ 0. The puzzle configuration
z(t+1) at time t +1 can be obtained according to the following updating scheme:

z(t+1)
i, j ∈ arg max

p

{
φ
(i, j)
(

p, `(t)
)∣∣∣ p ∈ π f (i, j)

}
, (5)

which selects for each pixel (i, j) ∈ D a puzzle piece in the set π f (i, j) maximizing the
agreement with the labelling `(t). On the other hand, given the puzzle configuration z(t+1) ∈
Z |π f at time t +1, we compute the new labelling `(t+1) ∈L by taking a majority vote over
all puzzle pieces as follows:

`(t+1)(u,v) ∈ arg max
y

{
∑

(i, j)∈D

[
z(t+1)

i, j (u− i,v− j) = y
]∣∣∣∣∣y ∈ Y

}
. (6)

The iterative process is started from an initial labelling `(0) ∈L and, by repeatedly ap-
plying rules (5) and (6), it will eventually converge towards a local solution of (3). Theorem
1, indeed, provides a theoretical guarantee that the iterative scheme never decreases the value
of the objective function Φ.

Theorem 1. Let π f be a label puzzle game for image f ∈ I , let `(0) ∈ L be an initial
labelling for f , and let z(0) ∈Z |π f be an initial puzzle configuration. Then for any t ≥ 0 we
have

Φ

(
z(t+1), `(t)

)
≥Φ

(
z(t), `(t)

)
(7)

and
Φ

(
z(t+1), `(t+1)

)
≥Φ

(
z(t+1), `(t)

)
(8)

where z(t+1) and `(t+1) are computed according to (5) and (6), respectively.
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Building

Grass
Sign

Tree

Figure 2: A labelling example of the proposed approach. Top to bottom, left to right: Image
to be labelled, groundtruth labelling, initial random forest classification, labellings obtained
by our approach after t = 0,5,10,20,35,50 iterations, final label captions.

Proof. By (5) we have for all t ≥ 0 and (i, j) ∈ D:

φ

(
z(t+1)

i, j , `(t)
)
≥ φ

(
z(t)i, j , `

(t)
)
.

By summing up each side of this inequality for all pixels (i, j) ∈ D we obtain (7).
As for the second inequality, note that by (6) and (1) we have

∑
(i, j)∈D

[
z(t+1)

i, j (u− i,v− j) = `(t+1)(u,v)
]
≥ ∑

(i, j)∈D

[
z(t+1)

i, j (u− i,v− j) = `(t)(u,v)
]

for all (u,v) ∈ D. This together with a trivial re-ordering of the summations yields

Φ

(
z(t+1), `(t+1)

)
= ∑

(u,v)∈D
∑

(i, j)∈D

[
z(t+1)

i, j (u− i,v− j) = `(t+1)(u,v)
]

≥ ∑
(u,v)∈D

∑
(i, j)∈D

[
z(t+1)

i, j (u− i,v− j) = `(t)(u,v)
]
= Φ

(
z(t+1), `(t)

)
from which the result derives.

As for the computational complexity of the solver, let N be the number of pixels, K the
average number of puzzle pieces per pixel, M the number of non-void elements of a puzzle
piece, k the number of labels, and γ the number of iterations. An update step for the pixel
configuration z has complexity O(K ·M ·N), while an update step for the labelling ` has com-
plexity O((k+M) ·N). The overall complexity is thus given by O(γ · (k+M+KM) ·N).
Note that in our experiments we stopped the iterative process if either a fixed point or a
maximum number γ = 75 of iterations was reached.

5 Experiments
In order to demonstrate the quality of our method, we evaluate on the challenging and widely
known CamVid [7] and MSRCv2 [31] databases. We use almost the same setup for both
databases, i.e. we collect the training samples on a regular grid with a stride of 10 (CamVid)
or 5 (MSRCv2) and apply an inverse weighting scheme to correct the imbalance of the train-
ing sample distribution. We train forests consisting of 15 decision trees with 500 iterations
per node test, stopping when less than 5 samples were available per leaf node. The fea-
ture patch sizes are fixed to 20× 20 while we evaluate different puzzle piece sizes on the
MSRCv2 database.

We use the following feature cues: CIELab raw channel intensities, first and second
order derivatives of the luminance channel and correlation coefficients between covariances
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Figure 3: Evaluation of label puzzle piece sizes and their impact on the global pixel (left)
and class average (right) accuracies for the MSRCv2 database.

of the RGB raw channel intensities and the first order derivatives of the grayscale intensity
image, similar to [15, 26]. The pixel-wise classifications (unary) are computed according to
the class label distribution of the central pixels of the puzzle piece returned by the trees. In
order to obtain the initial pixelwise labelling `(0) for the puzzle solver, we take a majority
vote decision based on the label statistics collected over all overlapping puzzle pieces. For
performance evaluation, we use standard criteria as e.g. used in [31]. These are the Global
Pixel Average, i.e. the fraction of correctly classified pixels computed over all classes and
test images, and the more strict Class Average, defined as the fraction of correctly classified
pixels belonging to a specific category over all test images.

On both databases, we compare to the labelling results obtained by minimizing the en-
ergy term of a conditional random field (CRF) model with graph cuts, when supplied with
our random forest classification results. We use the publicly available GCO implementa-
tion2 [5] and the alpha expansion solver. As unary or data terms, we provide the central label
statistics over the puzzle pieces of the entire forest. For the pairwise or smoothness term we
use the standard, contrast-sensitive Potts model as suggested in [4].

5.1 MSRCv2 Database
This database consists of 532 images containing 21 object classes and predefined splits into
276 training and 256 test images as suggested in [31]. Our random forests obtain pixel clas-
sification scores of (59.3/47.2%) (global/class average) which are higher than the scores
obtained by related random forest approaches of Kluckner et al. [15] (55.8/42.2%), the
naive, supervised approach of Shotton et al. [32] (49.7/34.5%) and Lazebnik et al. [22]
(53.3/40.7%) using combinations of color, textons and SIFT [24] features. There are how-
ever methods starting with a significantly better baseline as in Schroff et al. [29] (69.7/−%)
which we were not able to reproduce.

Influence of puzzle piece sizes In Figure 3 we show the influence of the puzzle piece
size on the obtained classification scores. The correlation between label puzzle size and
classification score is clearly indicated for both performance measures. This strengthens
our initial assumption that the introduction of contextual information at the local level is
viable for image labelling. Further increase of the label puzzle pieces will likely introduce
smoothing effects along the object boundaries unless a sufficient amount of label transitions
are captured during the training phase.

Comparison to CRF As illustrated in Table 5.1, we obtain superior results for both, the
global pixel labelling accuracy and the more strict per-class average score when compared to
a CRF. With our method we always improve over the baseline classification and are superior

2http://vision.csd.uwo.ca/code/
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Unary + Puzzle 70 60 43 96 83 78 81 96 70 59 71 55 79 73 42 25 59 29 75 53 40 37 6

Table 1: Comparison of scores on MSRCv2 database in [%] for puzzle piece size of 11×11.
Unary are the scores obtained by the structured random forest classifications alone, Unary
+ CRF are the results using the conditional random field and Unary + Puzzle refers to the
final labelling result, obtained by our proposed method. Bold style indicates best score while
underlined scores are same among CRF and our approach.

Figure 4: Qualitative labelling results obtained by our method on the MSRCv2 database.
First row: Original image, Second row: Ground truth labelling, Third row: Unary classifica-
tions, Last row: Our proposed labelling approach.

or equal to the CRF in 15/21 classes. Our final labelling result is in a comparable range of
those reported in [15, 22, 29, 31]. We are aware that state-of-the-art methods [18] achieve
higher scores on the MSRCv2 database, however, they are using higher-order terms in the
CRF and globally learned contextual information while we deliberatly restrict our method to
local classification results.

5.2 CamVid Database
The Cambridge-driving Labeled Video Database (CamVid) [7] is a collection of videos cap-
tured on road driving scenes, consisting of more than 10 minutes of high quality (970×720),
30 Hz footage. A subset of 711 images is almost entirely annotated into 32 categories, how-
ever, in our experiments on this database we used only the 11 commonly used categories
with the same splits for training and testing as presented in [7, 33]. Our unary classifaction
results are (70.7/44.8%) (global/class average) which are improved to (75.0/47.8%) when
using the CRF model. However, with our proposed label puzzle approach we can boost the
scores to (81.7/49.6%), showing competitive results in comparison to Brostow et al. [7]
(69.1/53.0%), and Sturgess et al. [33] (76.4/59.8%) and (79.8/59.9%) in a CRF setting
with only unary terms and unary+pairwise terms, respectively.
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6 Conclusion
In this paper we have proposed a novel approach for the task of image labelling, which al-
lows to exploit local contextual information and the label topological structure observed in
the training data. This is achieved by defining a label puzzle game, where a final labelling
is obtained by maximizing the mutual agreement of structured class labels (our label puzzle
pieces), which are associated with every pixel. We introduced a modification of the random
forest classifiers in order to discriminatively learn and provide the structured class labels
needed for the construction of a label puzzle game. We showed how the optimization prob-
lem underlying our approach can be optimized in order to obtain the final labelling, and we
provided theoretical properties and a complexity analysis of our algorithm. Our approach
achieved superior results in experiments on the MSRCv2 and CamVid databases when di-
rectly compared to a standard CRF formulation, supporting our claim that high-quality la-
belling results can be obtained by properly learning and integrating local contextual infor-
mation at a low-level. As a future work, we plan to extend our approach by incorporating
additional mid-level cues and global co-occurrence statistics.
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